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Abstract 
 

Cross-docking is a an important logistics strategy in which freight is 
unloaded from inbound vehicles and directly loaded into outbound 
vehicles, with little or no storage in between. This study considers a cross-
docking system which combines the vehicle routing problem with cross-
docking (VRPCD) for both inbound and outbound operations and truck 
sequencing problem at docks. The objective is to minimize the logistics 
center operation costs and transportation costs. We first formulated the 
integrated problem with a mixed integer programming model. Since 
VRPCD and sequencing problems are NP-hard, the integrated problem is 
also an NP-hard problem. We propose an ant colony optimization (ACO) 
algorithm to solve the VRPCD and sequencing problem by two 
independent ant colonies sequentially. The proposed ACO is tested with 
15 randomly generated instances. The results show that ACO can obtain 
the optimal solutions in small size instances. We believe the proposed 
ACO algorithms can be used for practical use for the cross-docking 
system.  

 
1 Introduction 
	

Cross-docking has become an increasingly popular distribution strategy implemented by 
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organizations to improve supply chain efficiency and minimize distribution cost 
(Napolitano, 2000). In a cross-docking system a product is received at a terminal, 
consolidated with other products going to the same destination, and then shipped at the 
earliest opportunity, without going into long-term storage (Bartholdi and Gue, 2004). 
Thus, the cross docking could eliminate two of the four major activities in a traditional 
warehouse, the storing and picking activities. The advantage of cross docking is cost 
savings in storage cost, inventory cost, transportation cost, and labor cost (Saddle Creek 
Corp., 2008). 

Cross docking is defined as a process of moving merchandise from the receiving 
dock to shipping for shipping without placing it first into storage locations (Material 
Handling Institute). Agustina et al. (2010) provided a general picture of the mathematical 
models used in cross-docking planning. Stephan and Boysen (2011) discussed the cross-
docking concept, classified relevant cross-dock settings and defined important decision 
problems. Van Belle et al. (2012) presented an extensive overview of the cross-docking 
concept and described several characteristics. At a cross­docking center (CDC), products 
flow through every day, involving suppliers, cross-docking operators, and customers. 
When implementing a cross-docking operation, two key points are simultaneous arrival 
and consolidation (Wen et al., 2009). Obviously, the truck scheduling is closely related to 
inbound and outbound vehicle routing. Buijs et al. (2014) reviewed the cross-docking 
system operations which include local and network related issues. The authors also 
mentioned that synchronization between local and network scheduling is important but 
rare research discussed. 

In order to efficiently process the transshipment at the CDC, both inbound and 
outbound schedules should be synchronized, several procedures have been introduced in 
recent years (Stephan and Boysen, 2011). The truck scheduling/sequencing problem 
assumed that the products on each inbound vehicle are known and arrival and departure 
times are also known. The problem could be reduced to sequencing all trucks when the 
number of docks is one. On the inbound side, the vehicle routing determines the arrival 
times of trucks. On the outbound side, succeeding vehicle routings possibly set the 
earliest and latest departure time based on the interaction between inbound and outbound 
trucks. Because of the consolidation however, the pickup and delivery routes are not 
independent. Obviously, both problems could be solved in a simultaneous manner so that 
considerable improvements of the overall planning task might occur. 

So far vehicle routing problem and truck sequencing problem in the cross-docking 
system have been treated separately. The truck (or some models using trailer) scheduling 
is important decision in the cross docking operation. It determines the sequences of 
inbound and outbound trucks. For the truck sequencing/scheduling problem, Boysen and 
Fliedner (2010) structured a classification scheme for the cross-docking scheduling 
problem. Yu and Egbelu (2008) addressed a truck scheduling problem where the product 
assignments from inbound trucks to outbound trucks are determined simultaneously with 
the docking sequences of the inbound and outbound trucks. Boysen et al. (2008) 
introduced a base model for scheduling trucks at cross-docking terminals, where a “one 



3 
 

inbound dock serves one outbound dock” problem is considered. Chen and Lee (2009) 
studied the truck scheduling problem as a two-machine flow shop scheduling problem 
and showed that the problem is strongly NP-hard. Li et al. (2009) considered a multiple 
dock cross-docking where all docks are the same and could be used either as inbound or 
outbound, the problem is formulated as a parallel machine scheduling problem, where 
there is no differentiation between inbound and outbound operations.  

Alpan et al. (2010) solved the multiple inbound and outbound dock configuration 
problem by a bounded dynamic programming. Vahdani and Zandieh (2010) presented an 
exhausted analysis of the performance of the variable neighborhood search algorithm for 
the truck scheduling problem. In their study different neighborhood structures and 
stopping criterion are tested. According to their results VNS is recommended to solve 
truck scheduling in cross-docking system problems. Boloori Arabani et al. (2011) also 
presented five metaheuristics to tackle same problem. Alpan et al. (2011) considered a 
multiple inbound and outbound dock configuration where the objective is to find the best 
schedule of transshipment operations to minimize the sum of inventory holding and truck 
replacement cost. Liao et al. (2012) presented two hybrid evolutionary algorithms (EA) to 
solve the one inbound and one outbound dock truck sequencing problem. They tested the 
EAs with the instances generated by Yu and Egbelu (2008). Liao et al. (2013) extended 
Liao et al. (2012) study to a multi-door cross docking operation under a fixed outbound 
truck departure schedule. The problem was solved by six different metaheuristic 
algorithms and ant colony optimization (ACO) is the best among all algorithms tested. 

Product destined for a cross dock in many cases needs to be picked up at various 
suppliers, and has to be delivered to multiple customers after consolidation at the cross-
dock. Both the pickup and the delivery process in such an environment can be seen as a 
vehicle routing problem (VRP). Lee et al. (2006) is probably the first that takes both VRP 
and cross-docking into consideration. They proposed a tabu search (TS) to determine the 
number of vehicles and the optimal vehicle routing schedule at a cross-dock to minimize 
the sum of transportation cost and fixed cost of vehicles. Liao et al. (2010) proposed 
another tabu search algorithm to solve the same problem. Wen et al. (2009) studied the 
vehicle routing problem with cross-docking (VRPCD). In this problem, products from 
suppliers are picked up by a homogeneous fleet of vehicles and then consolidated at a 
cross-dock and immediately delivered to customers by the same set of vehicles. Santos et 
al. (2011a) proposed a branch-and-bound algorithm to solve the VRPCD, while Santos et 
al. (2011b) presented a novel column generation formulation and solved it with a branch-
and-price algorithm. 

The VRP and the operations at the cross-dock are tightly coupled to impact the 
supply chain process. The vehicle routes could specify loading lists for both inbound and 
outbound trucks and the departure times of trucks leaving the cross-dock. Therefore, the 
coordination of cross-docking operations requires a holistic approach. To our knowledge, 
there is no research considers both VRPCD and truck sequencing for the cross-docking 
system. This research integrates VRPCD and truck sequencing and presents a new mixed 
integer programming model for the integrated problem. Since both VRPCD and 
sequencing are NP-hard, the integrated problem is also NP-hard. Due to the problem 
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complexity, we propose an ant colony optimization algorithm to solve the problem. To 
the best of our knowledge, there are limited research apply ACO to the cross-docking 
related problem. Musa et al. (2010) proposed a model that assigns capacity to the 
available routes and allocates loads to those routes. Liao et al. (2013) addressed the 
scheduling of inbound trucks to outbound trucks in a multiple docks setting.  

The rest of the paper is organized as follows. In section 2, problem description and 
mixed integer programming model is presented. The proposed ant colony optimization 
algorithm is explained in section 3. Section 4 presents the computational experiments for 
the proposed ACO algorithm. Finally, section 5 concludes the study and suggests the 
future research. 
	
2 Problem Description 
 
2.1 Assumptions 
 
This study considers a distribution network with a cross-dock terminal. The vehicle 
routing problem with cross-docking (VRPCD) for both inbound and outbound operations 
and truck sequencing problem at docks are integrated. Products at various locations are 
collected in the cross-dock prior to transport to their destinations. After consolidation 
based to product destination in the cross-dock, products are moved from the cross-dock to 
their respective destinations. The objective is to minimize the CDC operation times and 
transportation times for both inbound and outbound trucks. During the process inbound 
trucks can be scheduled at any time since no restrictions on arrival time are considered. 
Service times at CDC vary from truck to truck, which depends on the flow each truck 
carries. The facility layout considered allows an intermediate storage with unlimited 
capacity in front of outbound dock. As soon as an outbound truck loads its predefined set 
of products based on its routing, it leaves the terminal.  

The assumptions in this research are as follows. 
1. One side of the dock is designated to inbound trucks and the other side to outbound 

trucks. 
2. The numbers of both inbound and outbound vehicles are known. Vehicles will start 

and end at the cross-docking terminal. 
3. The pickup and delivery locations are known. The number and types of products to be 

picked up or delivered at each location are also known in advance. 
4. The unloading and loading time at the terminal is constant, while the transfer time 

between docks is also constant. 
5. Transshipment time between docks is fixed. 
6. There are multiple products to be pickup and delivered in the cross-docking system. 

Product units of a specific type can satisfy any demand for this product. 
7. Each outbound dock is capable to storage the outbound truck’s freight. 

Based on these assumptions, a mixed integer programming is formulated to 
minimize the total processing time which includes inbound and outbound transportation 
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time and the consolidation time at the terminal by integrating the vehicle routing problem 
and truck sequencing problem. Since each of both problems is NP-hard, the integrated 
problem is also NP-hard. An exact solution approach is difficult to find solution within 
reasonable time for real world large problem. We propose an ant colony optimization 
algorithm to solve this problem. 
	
2.2 Mathematical Formulation 
 
In developing the mathematical model, the following notations are used.  
Set: 
{0}:  cross-docking terminal 
A: set of pickup nodes 
B: set of delivery nodes 
G: set of product types 
K: set of pickup trucks 
L: set of delivery trucks 
Parameters: 
g
ia : quantity of product g that is picked up from node i 
g
ib : demand quantity of product g for node i 

H: constant moving time from the inbound dock to the outbound dock 
M: a big number 
Q: truck capacity 
tij: travel time from node i to j  
U: truck changeover time at docks 
α1: unit unloading time 
α2: unit loading time 
Decision variables: 

g
lD : quantity of product g on truck l 
g
kie  : quantity of product g when truck k departing from node i 

Fk: the starting time when truck k uses the dock 
g
kP : total quantity of product g on truck k 

Rl: the starting time when truck l use the dock 
T: total operating time for the cross-docking terminal

⎩
⎨
⎧

=
Otherwise

 truck outbound  toproducts  transfers truck inbound  if     ,1
  0,

lk
vkl  

:gklw  quantity of product g transferring from inbound truck k to outbound truck l 

⎩
⎨
⎧

=
Oterwise

after y immediatel  visit  truck if     ,1
  0,

ijk
xkij
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  1, sk
yks

 

⎩
⎨
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  0,
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The mathematical model for this integrated problem is as follows. 
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The objective function (1) sums up the inbound and outbound transportation cost 
and the operation cost at the cross-docking terminal. Constraints (2) and (3) ensure that 
every pickup node can only be served by only on truck. Constraints (4) and (5) state that 
each pickup node can only be served by only one truck. Constraints (6) and (7) enforces 
that a vehicle has to arrive and leave a node for inbound and outbound trucks, 
respectively. Constraints (8) and (9) ensure that every inbound and outbound truck must 
be used. Constraint (10) states that the inbound truck will leave the cross-docking 
terminal with no commodity, while constraint (11) ensures that no commodity on 
outbound truck when it return to the cross-docking terminal. Constraints (12) and (13) 
express the commodity on the consecutive movement of vehicles for inbound and 
outbound trucks, respectively. Constraint (14) represents the total number of units of each 
product type when a truck return to the terminal and (15) states that the quantity of loaded 
products cannot exceed the truck capacity. Similarly, constraints (16) and (17) state the 
quantity of loaded products for outbound truck cannot exceed the truck capacity. 

Constraint (18) ensures that the total number of units of product g that transfer from 
inbound truck k to all outbound trucks is exactly the initially loaded amount in that truck.  
Similarly, constraint (19) ensures that the total number of units of product g that transfer 
to outbound truck l from all inbound trucks is exactly the loaded amount in that truck. 
Constraint (20) enforces the correct relationship between transfer quantity variable and 
transfer variable.  Constraint (21) states that the first truck to be docked must after all 
inbound trucks arrive at the cross-docking terminal. Constraint (22)-(23) make a valid 
sequence for starting times for the inbound trucks based on their order. Constraint (24) 
connects the departure time for an outbound truck to the arrival time of an inbound truck 
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if a flow must be transferred from that inbound truck. Similar to constraints (22)-(23), 
constraints (25)-(26) function in a similar manner for the outbound trucks. Constraint (27) 
sets the total operating time at the cross-docking terminal. Constraints (28)-(31) are the 
integrality constraints. Constraints (32)-(38) are the non-negativity constraints. 

 
3 Ant Colony Optimization Algorithm 
	
The ant colony optimization (ACO) algorithm was first proposed by Dorigo et al. (1996). 
Subsequently, many variants of ACO have been developed and applied extensively in the 
combinatorial optimization problems. Descriptions of available ACO algorithms and 
related literature review can be obtained in Dorigo and Stützle (2004).  

This section introduces the proposed algorithm for solving the integrated problem. 
Our MACO adopts a hierarchical ACO structure with different transition rules for 
different ant colonies. The upper level is for the vehicle routing problem with cross-
docking subproblem, while the lower level is for the truck sequencing subproblem which 
is solved based on the results of the VRPCD. These two phases are applied sequentially. 
Moreover, two different pheromone matrices and pheromone updating rules are adopted 
to record pheromone information for each colony, respectively. The idea is to find the 
best routing for both inbound and outbound trucks, then the consolidation process can be 
achieved by minimizing the total operating time. The procedures of our ACO are 
described as follows and introduced in the following sections. 
Step 1: Initialization: 
 a. Set parameters. 
 b. Initialize value of pheromone matrices.  
 c. Let g = 1, h = 1. 
Step 2: Construct solutions for VRPCD:  
 a. Solve the VRPCD based on eqs. (39) and (40). 
 b. Apply the local pheromone updating rule (eq. (41)). 
 c. h = h+1. 
Step 3: If h < b (number of ants in ACO), go to Step 2. Otherwise, go to Step 4. 
Step 4: Apply local search to improve all constructed solutions. 
Step 5: Apply the global pheromone updating rule (eqs. (42) and (43)) based on the 

global-best and the iteration-best solutions of VRPCD. 
Step 6: Update the global best solution of VRPCD. 
Step 7: If the maximum number of iterations (Iter) is met, stop. and output the global 

best solution. Otherwise, g = g+1, h = 1, and go to Step 2. 
Step 8: Let g = 1, h = 1. 
Step 9: Given the results of VRPCD, construct solutions for truck sequencing:  
 a. Solve the truck sequencing based on eqs. (39) and (40). 
 b. Apply the local pheromone updating rule (eq. (41)). 
 c. h = h+1. 
Step 10: If h < b (number of ants in ACO), go to Step 9. Otherwise, go to Step11. 
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Step 11: Apply local search to improve all constructed solutions. 
Step 12: Apply the global pheromone updating rule (eqs. (42) and (43)) based on the 

global-best and the iteration-best solutions of truck sequencing. 
Step 13: Update the global best solution of truck sequencing. 
Step 14: If the maximum number of iterations (Iter) is met, stop, and output the global 

best solution. Otherwise, g = g + 1, h = 1, and go to Step 9. 
 
3.1 Vehicle Routing Phase 
 
In this paper, an ant colony optimization is applied to solve the VRPTW for each depot. 
The procedures of our ACO are described as follows 
 
3.1.1 Route Construction Rule 
 
In our ACO, when located at node i, ant h moves to a node j chosen by the following 
state transition rule. 

( ) ( ){ }
⎪⎩

⎪
⎨
⎧

>

≤⋅
= ∈

0

0

  ,

  ,

qqS

qqmaxarg 
s ijijNj i

βητ
 (39) 

( ) ( )
( ) ( )

⎪
⎪
⎩

⎪⎪
⎨

⎧
∈

⋅

⋅

= ∑
∈

otherwise

Njif
tPS

i

Nq
iqiq

ijij

k
ij

i

 ,0

  ,
)(   : β

β

ητ

ητ

 (40) 

where Ni is the set of nodes which are not visited by ant h at node i, τij is the pheromone 
of edge (i, j), ηij is defined as the reciprocal of travel time of edge (i, j). β is the parameter 
that determines the relative effect of τij versus ηij (β > 0), q is a random variable 
uniformly distributed in [0, 1], and q0 is a pre-defined parameter (0 ≤ q0 ≤ 1). If q ≤ q0, 
then the best depot v for customer i is determined according to eq. (39). On the contrary, 
it is chosen according to S which is a random variable selected according to the 
probability distribution given in eq. (40). Hence, the parameter q0 determines the relative 
importance of exploitation eq. (39) versus exploration eq. (40). 
 
3.1.2 Local Search 
 
Local search is a time-consuming procedure of ACS. The analysis in Ting and Chen 
(2013) showed that it is efficient for ACO to only apply local search to the best solution 
among all solutions built at the current iteration. To save the computation time, only the 
iteration-best solution is applied local search in this paper. In addition, three local search 
methods are involved in our ACO, including 2-opt, swap and insertion. The local search 
could be applied within route or between routes. This is because that diverse 
neighborhood moves can expand the solution searching space. In 2-opt, two non-
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consecutive arcs are removed, either in the same route or in two different routes, and the 
two paths created are reconnected to restore feasibility. Two customers are exchanged in 
swap. Insertion is to move one customer from its current position to another position, in 
the same route or in a different route. In each iteration, we randomly implement only one 
local search method. Thus, we assume that every approach has the same probability to be 
selected for local search. 
 
3.1.3 Pheromone Updating Rule 
 
The pheromone updating of a typical ACO includes global and local updating rules. The 
ants apply a local pheromone update rule immediately after they crossed an edge (i, j) 
during the tour construction. The local pheromone updating rule of our ACO is 

0)1( τρτρτ ⋅−+⋅= old
ij

new
ij , if {edge(i, j)∈ Th} (41) 

where Th denotes the routes constructed by ant h, ρ is the pheromone decay parameter in 
the range of [0, 1] that regulates the reduction of pheromone on the edges. The τ0 is the 
initial value of the pheromone matrix for the route construction rule, and is set to be 1/Lnn, 
where Lnn is the length of routes constructed by the Nearest Neighborhood heuristic. 

In our ACO, the best elitist tours, including the global-best tour (Tb) and the 
iteration-best tour (Ts) of VRPCD, are allowed to lay pheromone on the edges that belong 
to them. The idea here is to balance between exploitation (through emphasizing the 
global-best tour) as well as exploration (through the emphasis to the iteration-best tour). 
The global updating rule of ACO for VRPCD is described as follow. 

e
ij

old
ij

new
ij τρτρτ Δ⋅−+⋅= )1(  (42) 

where  

otherwise
}),{( if   

0
/)]()[( sbwswbwe

ij

TorTviLLLLL ∈

⎩
⎨
⎧ −+−

=Δτ  (43) 

Lb and Ls denote the tour length of the global-best solution and the iteration-best solution 
of VRPCD, respectively, and Lw is the tour length of the worst solution of the current 
iteration. 
 
3.2 Truck Sequencing Phase 
 
3.2.1 Truck Sequencing Rule 
 
The sequence is represented as a permutation for both inbound and outbound trucks, 
respectively. Both inbound and outbound truck sequence use the same mechanism. We 
will only describe the inbound truck sequence in details. For each ant, randomly pick the 
first inbound truck to visit, say truck i. Select the next inbound truck based on probability 
computed as eqs. (39) and (40) to construct the sequence. However, Ni and ηij are defined 
differently from those for VRPCD. Ni in eq. (39) is defined here as the set of trucks that 
are not assigned a sequence, while ηij is defined as the reciprocal of total number of 
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products on truck i.  
 
3.2.2 Local Search 
 
Three local search methods are involved in our ACO for truck sequencing, including 2-
opt, swap and insertion. In 2-opt, two non-consecutive sequence are removed, and the 
two subsequence created are reconnected to restore feasibility. The swap involves 
swapping the values of two randomly chosen unique positions in the sequence. The 
insertion involves moving the value in the second randomly chosen position to the 
position before the value of the first randomly chosen position. 
 
3.2.3 Pheromone Updating Rule 
 
The pheromone updating rules for truck sequencing are the same as those for the VRPCD 
in eqs. (41)-(43). However, the edge (i, j) represents the sequence that truck j is scheduled 
immediately after truck i in the sequence. The route is changed to the sequence for both 
inbound and outbound docks.  
 
4 Computational Experiments 

	
The proposed reduced variable neighborhood search algorithms were coded in Microsoft 
Visual Studio C++ 2010 and run on a PC with an Inter Core i5-2433 3.10GHz processor, 
8.0GB of RAM and Windows 7 operating system. The instances tested are generated 
based on the flow pattern in Yu (2002) and Liao et al. (2013) for the truck sequencing 
problem, while the vehicle routing with cross-docking part are based on Lee et al. (2006). 
15 instances are generated randomly. The proposed ACO algorithm was tested and 
compared with the solution given by Gurobi optimizer 5.1.0 with the running time of two 
hours. Each instance is run for 20 times.  

In preliminary experiments we tried to find a good parameter setting for the 
proposed ACO algorithm/heuristic information combinations. We consider a set of 
parameters for the algorithm and then modifying one at a time, while keeping the others 
fixed. The parameters that were tested include: ρ ∈ {0.8, 0.85, 0.9, 0.95}, q0 ∈ {0.1, 0.3, 
0.5, 0.7, 0.9}, β ∈ {0.2, 0.4, 0.6, 0.8, 1}, b ∈ {3, 5, 10, 15}, Iter ∈ {60, 90, 120, 150} 
(maximum iterations of ACO). We found that for the parameter setting, α = 0.95, q0 = 
0.9, β = 0.8, b = 10 and Iter = 150, can provide the best average solution. 

Table 1 shows the characteristics of the 15 instances that we generated. Column1 is 
the instance number. Columns 2-7 present the number of pickup nodes A, number of 
delivery nodes B, number of inbound trucks K, number of outbound trucks L, number of 
product types G, and truck capacity Q. The number of pickup nodes ranges from 4 to 50 
while the number of delivery nodes ranges from 6 to 50. Column 8 and 9 are the constant 
material handling time between docks H and truck changeover time U. In all instances, 
the loading and unloading times are assumed to be equal and to be one time unit. 
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Numbers of product g for both pickup and delivery at node i are generated by a uniform 
distribution in column 10 based on Yu (2002) and Liao et al. (2013). The travel time of 
each edge (i, j) is generated by a uniform distribution as discussed in Lee et al. (2006) in 
column 11. The last two columns show the number of variables and number of constraint 
for each instance, respectively. It is noted that the instance becomes very complicated 
when the problem size increases. The integrated problem cannot be solved by the 
optimization software within reasonable computational time. 
	

Table 1: Problem characteristics of the test instances. 

Inst. A B K L G Q H U 
g
i

g
i ba ,  tij 

# of 
Variables  

# of 
Constraints 

1 4 6 3 3 4 70 100 75 U(0,13) U(48,560) 460 897 
2 8 8 3 3 4 80 100 75 U(0,13) U(48,560) 796 1863 
3 10 14 2 3 5 150 100 75 U(0,13) U(48,560) 1176 2691 
4 20 20 4 4 6 200 100 75 U(0,13) U(48,560) 4737 20233 
5 25 23 5 4 4 170 100 75 U(0,13) U(48,560) 6775 21945 
6 25 25 4 3 5 270 100 75 U(0,13) U(48,560) 5782 22754 
7 30 26 4 4 4 210 100 75 U(0,13) U(48,560) 7841 26209 
8 30 36 4 4 3 150 100 75 U(0,13) U(48,560) 10265 27385 
9 30 32 5 6 6 250 100 75 U(0,13) U(48,560) 13806 66002 

10 40 40 5 5 4 270 100 75 U(0,13) U(48,560) 18676 65711 
11 40 40 6 6 6 280 100 75 U(0,13) U(48,560) 23533 117893 
12 42 48 6 7 3 150 100 75 U(0,13) U(48,560) 30010 82383 
13 42 42 7 7 3 150 100 75 U(0,13) U(48,560) 28043 76273 
14 40 48 7 8 6 285 100 75 U(0,13) U(48,560) 35660 181826 
15 50 50 8 8 4 175 100 75 U(0,13) U(48,560) 45409 163401 

	
Table 2 present the minimum, maximum, average, standard deviation, and average 

CPU time in seconds for each instance over 20 runs. Among these 15 instances, 
optimization software Gurobi can only solve instance 1 within the 2 hour computation 
time limit. The best solution of instance 2 in 20 runs are the same, the lower bound of the 
Gubori is 4845 after 2 hours. We expect that the best solution might be the optimal 
solution of instance 2. For instances 3-15, we also compute the lower bound of the 
integrated problem by adopting Vahdani and Zandieh’s (2010) lower bound (LBs)on the 
truck sequencing as shown in eq. (44) and the minimum VRPCD cost in 20 runs. 

⎪
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−+−++
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=
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 Comparing to the LB, our ACO can obtain the same results in 13 out of 15 instances. 
The average of the 15 instances is only 0.06%. It is noted that the lower bound of the 
VRPCD is based on the best solution of our ACO. Thus, the actual lower bound might be 
lower than that we obtain. In the future, we might have to apply different approach to 
obtain better solution in VRPCD. 
	

Table 2: Results of the 15 test instances. 

Inst. Min Max Avg. Std. dev. Time (s) LB 
1 3394a 3394 3394.00 0.00 3.87 3394 
2 4932 4932 4932.00 0.00 4.52 4932 
3 4040 4454 4255.40 120.04 6.27 4040 
4 7838 8221 8075.55 104.33 16.14 7751 
5 7713 8337 8062.80 162.89 31.79 7713 
6 7459 7957 7722.55 120.98 27.12 7459 
7 8533 9410 9014.45 267.97 40.66 8533 
8 9630 10262 9868.95 153.45 75.43 9630 
9 11100 11569 11329.80 127.14 73.74 11097 

10 10230 11062 10676.40 244.03 154.87 10230 
11 12587 13173 12865.50 138.78 253.61 12587 
12 12011 13208 12651.75 285.92 279.87 12011 
13 12474 13458 13079.20 276.31 188.15 12474 
14 14155 15004 14609.35 229.17 235.92 14155 
15 16013 17078 16585.45 288.54 1981.56 16013 

Avg. 9473.93 10101.27 9808.21 167.97 224.90 9467.93 
aGurobi obtains the optimal solution 

 
5 Conclusion 

 
In this research a new mixed integer programming model is proposed for the integrated 
problem, which combines vehicle routing and sequencing at cross-docking terminals. 
Since this problem encompasses the combination of two NP-Hard problems it cannot be 
solved in large instances in a polynomial computational time. An ACO algorithm was 
developed to solve large size instances of the problem. Our ACO solve two subproblems 
sequentially with two ant colonies. The results of vehicle routing problem were the input 
for the truck sequencing problem. To test out algorithm, 15 test instances were randomly 
generated based on the setting from the literature. The model is tested in Gurobi 
optimizer to find optimal solution for small instances. The effectiveness of the proposed 
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algorithm was tested for different size problems. The results show that our ACO could 
provide very good solutions. In the future, we would like to solve the integrated problem 
with an iterated approach to solve the integrated problem. 
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